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Abstract Phosphatidic acid phosphatase (PAP) is an
evolutionarily conserved eukaryotic enzyme that
catalyzes the Mg2þ-dependent dephosphorylation of
phosphatidic acid to produce diacylglycerol. The
product and substrate of PAP are key intermediates
in the synthesis of triacylglycerol and membrane
phospholipids. PAP activity is associated with lipid-
based cellular defects indicating the enzyme is an
important target for regulation. We identified that
the antidepressant sertraline is a novel inhibitor of
PAP. Using Saccharomyces cerevisiae Pah1 as a model
PAP, sertraline inhibited the activity by a noncom-
petitive mechanism. Sertraline also inhibited the PAP
activity of human lipin 1 (α, β, and γ), an orthologue of
Pah1. The inhibitor constants of sertraline for the
S. cerevisiae and human PAP enzymes were 7-fold and
∼2-fold, respectively, lower than those of proprano-
lol, a commonly used PAP inhibitor. Consistent with
the inhibitory mechanism of sertraline and propran-
olol, molecular docking of the inhibitors predicts that
they interact with non-catalytic residues in the hal-
oacid dehalogenase-like catalytic domain of Pah1. The
Pah1-CC (catalytic core) variant, which lacks regula-
tory sequences, was inhibited by both drugs in
accordance with molecular docking data. That Pah1
is a physiological target of sertraline in S. cerevisiae is
supported by the observations that the over-
expression of PAH1 rescued the sertraline-mediated
inhibition of pah1Δ mutant cell growth, the lethal
effect of overexpressing Pah1-CC was rescued by
sertraline supplementation, and that a sublethal dose
of the drug resulted in a 2-fold decrease in TAG
content.
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Phosphatidic acid (PA) phosphatase (PAP, 3-sn-phos-
phatidate phosphohydrolase, EC 3.1.3.4) is an evolu-
tionarily conserved eukaryotic enzyme (1–9) that
catalyzes the Mg2+-dependent dephosphorylation of
PA to produce diacylglycerol (DAG) (10, 11) (Fig. 1A).
PAP activity from diverse eukaryotic organisms is
dependent on the DXDX(T/V) catalytic motif in the
haloacid dehalogenase (HAD)-like the domain of the
enzyme (2, 12, 13). PAP is an extensively phosphorylated
enzyme, and the posttranslational modification regu-
lates enzyme activity, subcellular localization, and pro-
tein stability (14–16). The enzyme plays a major role in
lipid homeostasis by controlling the cellular levels of
PA and DAG, which are key intermediates for the
synthesis of triacylglycerol (TAG) and membrane
phospholipids (15–17). PA and DAG also function in
lipid signaling pathways (15, 18–23), vesicular trafficking
(24–28), lipid droplet formation (29, 30), phospholipid
synthesis gene expression (31–33), and facilitate mem-
brane fission/fusion events (34–39). The importance of
PAP to lipid homeostasis and cell physiology is exem-
plified in yeast, mice, and humans by a host of cellular
defects (e.g., aberrant nuclear membrane morphology,
defects in lipid droplet formation, fatty acid-induced
lipotoxicity, defects in vacuole fusion and autophagy,
apoptosis, and reduced chronological life span) and
lipid-based diseases (e.g., lipodystrophy, obesity,
inflammation, insulin resistance, peripheral neuropa-
thy, type 2 diabetes) that are associated with loss or
overexpression of the enzyme (15, 17, 40–49).

Because of its key role in lipid synthesis, the PAP
enzyme can be considered a drug target to alleviate
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Fig. 1. PAP reaction and structures of sertraline and pro-
pranolol. A: PAP catalyzes the Mg2+-dependent dephosphory-
lation of PA to produce DAG. The structures of PA and DAG
are shown with 16:0 and 18:1 acyl chains (B), the structure of
sertraline. C: the structure of propranolol.
metabolic disorders associated with the disturbance of
the PA/DAG balance (17). Yet molecules that effec-
tively regulate PAP activity are relatively rare. One
molecule that is widely used to inhibit PAP activity in
eukaryotic cells is propranolol (Fig. 1C) (4, 50–60). In
some studies, the use of propranolol has provided
insight into the role PAP activity has in cellular pro-
cesses (28, 59–63). For example, its inhibitory effect on
the PAP activity in the rice blast fungus Magnaporthe
oryzae is the basis for alterations in lipid metabolism and
suppression of fungal sexual reproduction, sporulation,
growth, and infection of diverse plants (55).

Sertraline is a selective serotonin reuptake inhibitor
prescribed to humans for the treatment of depression
and social anxiety disorders (64). Interestingly, sertra-
line also exhibits antifungal activity (65–70), but the
basis of its antifungal action is unclear (65, 71). Studies
with baker’s yeast Saccharomyces cerevisiae have led to the
hypothesis that sertraline-induced lethality is a conse-
quence of phospholipidosis, a condition that is associ-
ated with abnormal internal membrane structures (71,
72). In addition, the drug is known to induce the for-
mation of supersized lipid droplets in S. cerevisiae, as well
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as in pathogenic yeasts Cryptococcus neoformans and
Candida albicans, and the pathogenic filamentous fungus
Aspergillus fumigatus (65). The aberrant expansion of the
nuclear/endoplasmic reticulum membrane and defects
in lipid droplet formation are phenotypes of PAP-
deficient S. cerevisiae pah1Δ cells (12, 30, 40, 73, 74).
Moreover, a recent study has shown that sertraline
downregulates adipogenic pathways and upregulates
phospholipid synthesis in human mesenchymal stem
cells (75), characteristics observed in higher eukaryotes
that lack lipin 1 PAP activity (42). In this work, we
demonstrate that sertraline (Fig. 1B) is a novel
noncompetitive inhibitor of PAP, and its potency is
superior to propranolol, expanding the toolbox of re-
agents that can be used to control the enzyme activity in
eukaryotic organisms.
MATERIALS AND METHODS

Materials
All chemicals were reagent grade. Standard media for the

growth of yeast and bacteria were acquired from Difco Lab-
oratories. IgG-Sepharose and Q-Sepharose were purchased
from GE Healthcare. Nickel-nitrilotriacetic acid agarose resin
and kits for plasmid purification were from Qiagen. Pierce
Strong Anion Exchange Mini Spin columns, Dulbecco’s
Modified Eagle Medium, and BODIPY 493/503 were pur-
chased from Thermo Fisher Scientific. Invitrogen-supplied
DNA size ladders. Alkaline phosphatase, ampicillin, ATP,
bovine serum albumin, nucleotides, Roswell Park Memorial
Institute (RPMI)-1640 medium (product number R1383), silica
gel 60 TLC plates, Triton X-100, and propranolol (product
number P 5544) were from Millipore-Sigma. Sertraline (prod-
uct number 047897) was purchased from Matrix Scientific.
Roche was the source for EDTA-free cOmplete ULTRA pro-
tease inhibitor tablets. Fisher Bioreagents provided the chlor-
amphenicol. Lipids were acquired from Avanti Polar Lipids.
Radiochemicals were purchased from Revvity. National Di-
agnostics was the source of scintillation counting supplies.

Cells, plasmids, and growth conditions
The cells and plasmids used in this study are listed in

Table 1. Standard methods were used to culture S. cerevisiae and
E. coli cells (76, 84). The growth of yeast and bacterial cells was
spectrophotometrically monitored by measuring the absor-
bance at 600 nm (A600 nm). Solid growth media contained 2%
and 1.5% agar for yeast and E. coli, respectively. Plasmid
propagation was performed with E. coli strain DH5α. E. coli
cells were grown at 37◦C in lysogeny broth medium (1%
tryptone, 0.5% yeast extract, 1% NaCl, pH 7.0). The indicated
antibiotics were used to select for E. coli cells containing
plasmids. Yeast transformants were grown in synthetic com-
plete (SC) medium-2% glucose lacking the appropriate
nutrient for plasmid maintenance.

To overexpress the phosphorylated forms of Pah1, Pah1-
ΔRP, and Pah1-CC from S. cerevisiae, the pah1Δ nem1Δ strain
(SS1132) harbored pGH452, pGS104, and pGH465 respec-
tively (78, 80). The expression host, which lacks the Nem1-
Spo7 complex, ensures the hyperphosphorylation of Pah1
(40, 82). The plasmid-bearing SS1132 cells were inoculated
into SC-Ura-2% glucose at A600 nm = 0.1 and incubated at



TABLE 1. Cells and plasmids used in this study

Cell or plasmid Genotype or Relevant Characteristics Source or Reference

Cell
Escherichia coli
DH5⍺ F- Φ80 lacZΔM15Δ (lacZYA-argF)U169 deoR recA1 endA1 hsdR17

(rk- mk
+) phoA supE44 λ−thi-1 gyrA96 relA1

(76)

NiCo21 (DE3)pLysSRARE2 can::CBD fhuA2 [Ion] ompT gal (λ DE3) [dcm] amA::CBD sly::CBD
glmS6Ala ΔhsdS λ DE3 = λ sBamHIo ΔEcoRI-B int::(lacI::PlacUV5::T7
gene1) i21 Δnin5 pLysSRARE2

New England Biolabs

Rosetta2 (DE3)pLysS F- ompT hsdSB (rB-mB
-) gal dcm (DE3) pLysSRARE2 (CamR) Novagen

Saccharomyces cerevisiae
RS453 MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-52 (77)

Derivative
SS1026 pah1Δ::TRP1 (40)
SS1132 pah1Δ::TRP1 nem1Δ::HIS3 (78)

W303-1A MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 (79)
Derivative

GHY57 pah1Δ::URA3 (1)
Human
HepG2 (HB-8065) Liver cancer cell line exhibiting epithelial-like morphology ATCC

Plasmid
pET-15b E. coli expression vector with N-terminal His6-tag fusion Novagen
Derivative

pGH313 PAH1 coding sequence insertion (1)
pGS108 PAH1(ΔRP) coding sequence insertion (80)

pET-28b(+) E. coli expression vector for C-terminal His6-tag fusion (KanR) Novagen
Derivative

pGH322 LPIN1α coding sequence insertion (4)
pGH327 LPIN1β coding sequence insertion (4)
pGH321 LPIN1γ coding sequence insertion (4)

YEp351 High-copy number E.coli/yeast shuttle vector with LEU2 (81)
Derivative

pGH311 PAH1 coding sequence insertion (1)
pYES2 High-copy number E.coli/yeast shuttle vector with URA3 and

GAL1 promoter
Thermo Fisher Scientific

Derivative
pGH452 PAH1-PtA coding sequence insertion with protein A tag (82)
pGS104 PAH1(ΔRP) coding sequence insertion with protein A tag (80)
pGH465 PAH1-CC coding sequence insertion with protein A tag (83)
30◦C for 24 h. The saturated cultures were harvested by
centrifugation at 1,500 g for 10 min, and cell pellets were
resuspended to A600 nm = 0.4 in 2 l of induction media (SC-
Ura-1% raffinose-2% galactose) and incubated at 30◦C until
A600 nm = 1.0. For overexpression and purification of the
unphosphorylated forms of Pah1 and Pah1-ΔRP, E. coli NiC-
o21(DE3)pLysS RARE2 harboring pGH313 and pGS108 (80),
respectively, was grown to A600 nm = 1.0 at 37◦C in 1 l LB
containing chloramphenicol (34 μg/ml) and ampicillin
(100 μg/ml). For overexpression and purification of the
unphosphorylated forms of lipin 1α, β, and γ, E. coli Roset-
ta2(DE3)pLysS harboring pGH322, pGH327, and pGH321 (4),
respectively, was grown to A600 nm = 0.5 at 37◦C in 1 l of LB
medium containing kanamycin (30 μg/ml) and chloram-
phenicol (34 μg/ml). Protein expression was induced by the
addition of 1 mM isopropyl-β-D-thiogalactoside.

To examine the effect of sertraline on yeast growth, cells
were incubated in RPMI-1640 (supplemented with 0.2% glucose
and 165 mM MOPS, adjusted to pH 7 with NaOH) or SC-0.2%
glucose media in a 24-well plate (GenClone, product number
25–102) covered with Breathe-EZ membrane (Diversified
Biotech). The plate was incubated in a synergy H1 plate reader
(BioTek) at 30◦C with shaking, measuring A600 nm every three
minutes for 24 h. The effect of sertraline on the growth of WT
and pah1Δ mutant cells in RPMI-1640 and SC-0.2% glucose
media was examined in 96-well U-bottom plates (Falcon,
product number 351177) using a standard Clinical and Labo-
ratory Standards Institute broth microdilution assay (85). The
Ser
cell density was determined by measurement of A600 nm after a
48-h static incubation using a SpectraMax M2e microplate
reader (Molecular Devices). To observe the effect of rescuing
the sertraline-supplemented pah1Δ mutant (strain GHY57)
with PAH1, cells overexpressing Pah1 (plasmid pGH311) or not
(plasmid YEp351, vector control) were grown in SC-2% glucose
to saturation before being re-inoculated at A600 nm 0.1 in the
same medium in the presence or absence of 200 μM sertraline.
A600 nm readings were taken every 2 h for 26 h. To examine the
effect of sertraline on growth of cells overexpressing the Pah1-
CC, the pah1Δ mutant (strain SS1026) expressing Pah1 (plasmid
pGH452) or Pah1-CC (plasmid pGH465) were grown in SC-2%
raffinose until saturation before harvesting and re-inoculating
at A600 nm of 0.1 in SC-2% galactose with 100 μM sertraline. The
A600 nm readings were taken after 4 days of incubation.

HepG2 cells were maintained at 37◦C with 5% CO2 in
Dulbecco’s Modified Eagle Medium containing 0.45% glucose,
0.058% glutamine, 0.1% sodium pyruvate, 10% fetal bovine
serum, and 1% penicillin/streptomycin. The cells were seeded
in triplicate to 10 cm dishes at a density of 1.1 × 106 cells/plate
(10 ml volume), incubated for 6 h for adherence to the plate,
and then incubated with sertraline for 18 h.

Enzyme purification
All procedures were performed at 4◦C. Protein A-tagged

Pah1 (82), Pah1-ΔRP (80), and Pah1-CC (83) expressed in the
S. cerevisiae pah1Δ nem1Δ mutant (SS1132) were purified from
traline inhibits phosphatidic acid phosphatase activity 3



the cell extracts by affinity chromatography with IgG-
Sepharose followed by anion exchange chromatography
with Q-Sepharose (82). His6-tagged Pah1 (1) and Pah1-ΔRP
(86) expressed in E. coli NiCo21(DE3)pLysS RARE2 were pu-
rified from the cell extracts by nickel-nitrilotriacetic acid-
agarose chromatography, followed by anion exchange
chromatography with Q-Sepharose (1, 86). His6-tagged hu-
man lipin 1 isoforms expressed in E. coli strain Rosetta 2(DE3)
pLysS were also purified from the cell extracts by nickel-
nitrilotriacetic acid-agarose chromatography (4). As
described previously (1, 4, 80, 86), SDS-PAGE analysis (87)
indicated that the Pah1, Pah1-ΔRP, Pah1-CC, and lipin 1
preparations were highly purified. The purified enzymes
were stored at −80◦C.
Preparation of Triton X-100/PA-mixed micelles
PA dissolved in chloroform was dried in vacuo for 1 h. The

dried PA was suspended in Triton X-100 to prepare Triton X-
100/PA-mixed micelles (88). The mole percent of PA in the
Triton X-100/PA-mixed micelle was calculated using the
following formula: mol %PA = 100 × [PA (molar)]/([PA
(molar)] + [Triton X-100 (molar)]). The total PA concentration
in the Triton X-100/PA-mixed micelles was kept below 15 mol
% to ensure that the structure of the PA-mixed micelles was
similar to that of pure Triton X-100 micelles (89, 90).
PAP assay
PAP activity was measured at 30◦C for 20 min by following

the release of water-soluble 32Pi from chloroform-soluble
[32P]PA (5,000–10,000 cpm/nmol) (1, 88). [32P]PA was enzy-
matically synthesized from 1, 2-dioleoyl DAG and [γ-32P]ATP
with E. coli DAG kinase (88). Pah1-CC PAP activity was
measured by following the formation of Pi from unlabeled
PA using the malachite green-molybdate reagent (4, 91). The
reaction mixture in a total volume of 100 μl contained 50 mM
Tris-HCl (pH 7.5), 1 mM MgCl2, 10 mM 2-mercaptoethanol,
0.2 mM PA, 2 mM Triton X-100, and 50 ng purified enzyme.
The enzyme assays were conducted in triplicate; the reactions
were linear with time and protein concentration. Sertraline or
propranolol was dissolved in DMSO and added at the indi-
cated amount with an equivalent volume of DMSO being
added to the control reactions.
Molecular docking
The three-dimensional structure of Pah1 predicted by

AlphaFold2 (92, 93) was accessed through the ChimeraX pro-
gram. The chemical structures of sertraline and propranolol
were obtained from the PubChem database. The Auto-
DockTools graphical user interface was used for the prepa-
ration and execution of the docking simulations. AutoGrid4
was used for the generation of the atomic interaction maps
(grids) used by AutoDock4 for the molecular docking simu-
lations (94, 95). The Lamarckian genetic algorithm was used to
predict 100 docked states of sertraline or propranolol to Pah1
with 25,000,000 evaluations of the docked state per run. The
results were visualized in the PyMol program.
Hydrogen–deuterium exchange mass spectrometry
The hydrogen–deuterium exchange mass spectrometry

experiments followed the protocol of Zandarashvili et al. (96)
as modified for Pah1 as follows. For deuterium exchange
experiments, Pah1 at 2.3 mg/ml was incubated with 6 mM
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sertraline or propranolol with a 1% DMSO final concentration
for at least 30 min before a 10-fold dilution into exchange
buffer (25 mM HEPES, 150 mM NaCl, 5 mM TCEP, in ∼90%
D2O) or used in the apo form for comparison. A time course
was done from 20 s to 60 min at 21̊C for all conditions.
Complete details of the methodology are found in
supplemental Table S1.

Lipid analysis
S. cerevisiae cells (5.0 × 106 cells/ml) were labeled to steady

state with 1 μCi/ml of [2–14C]acetate for 12 h at 30◦C in SC-0.2%
glucose with and without 163 μM sertraline. Lipids were
extracted (97) from ∼ 8 × 107 cells and analyzed by one-
dimensional TLC with silica gel 60 plates using the solvent
system containing hexane/diethyl ether/glacial acetic acid
(40:10:1, v/v) (98). Radiolabeled lipids were visualized by phos-
phorimaging with a Storm 860 Molecular Imager (GE
Healthcare) and quantified with ImageQuant software using a
standard curve of [2–14C]acetate. The amounts of TAG and
phospholipids were normalized to total lipids on TLC plates.
HepG2 cells were incubated with 10 μM sertraline using DMSO
as a vehicle. After 18 h of incubation, 1.5 × 106 cells were
collected and homogenized in chloroform/methanol (2:1, v/v),
followed by the addition of acidified saline and centrifugation
for phase separation (99). The organic phase was dried under
nitrogen, reconstituted in chloroform/methanol (2:1, v/v),
spotted onto Silica Gel 60 TLC plates, and developed in hep-
tane/isopropyl ether/acetic acid (60:40:3, v/v). Plates were
dried, dipped in the solution of 10% copper sulfate in 10%
phosphoric acid, dried in air, and heated at 100◦C for 40 min.
Densitometry of charred bands corresponding to TAG and
phospholipids was performed with ImageJ software (99) and
normalized to the density of all lipids on the TLC plates.

Lipid droplet analysis
Lipid droplets in exponential-phase cells were stained with

the fluorescent dye BODIPY 493/503 (32, 100). The green
fluorescence signal of the lipid droplets was observed using a
Nikon Eclipse Ni-U microscope with the EGFP/FITC/Cy2/
AlexaFluor 488 filter, recorded by the DS-Qi2 camera, and
subjected to imaging analysis with the NIS-Elements BR
software. The number of cellular lipid droplets was deter-
mined by examination of ≥ 150 cells.

Protein quantification
Protein concentration was determined by the Bradford

protein-dye binding assay (101) using bovine serum albumin as
the standard.

Data analysis
Enzyme kinetic parameters were determined using the

enzyme kinetics module of the SigmaPlot software. SigmaPlot
software was utilized for statistical analysis; P values < 0.5
were taken to be statistically significant.

RESULTS

Sertraline inhibits the phosphorylated and
unphosphorylated forms of Pah1 PAP

We examined the effect of sertraline on the PAP
activity of Pah1 from S. cerevisiae by measuring the



release of water-soluble 32Pi from chloroform-soluble
[32P]PA (88). The substrate PA was delivered to the
assay as a uniform Triton X-100/PA-mixed micelle to
mimic the membrane surface for catalysis (102). In the
first set of experiments, we utilized the phosphorylated
form of the enzyme that was isolated from S. cerevisiae
cells lacking Nem1-Spo7, a protein phosphatase com-
plex that dephosphorylates Pah1 (40, 86, 103). PAP ac-
tivity was measured at a subsaturating concentration of
PA (ie, 2.44 mol %) in the Triton X-100/PA-mixed mi-
celles (1, 102, 104) to readily observe the inhibitory effect
of sertraline (105–107). Sertraline in the assay mixture
caused a dose-dependent inhibition (IC50 = 85 μM) of
Pah1 PAP activity (Fig. 2, left). It similarly inhibited
(IC50 = 88 μM) Pah1-ΔRP (80), a Pah1 truncation variant
that lacks the fungal-specific RP domain and phos-
phorylated less efficiently in S. cerevisiae cells (Fig. 2,
left).

In the second set of experiments, we examined the
sertraline effect on the PAP activity of unphosphory-
lated Pah1 and Pah1-ΔRP. The lack of enzyme phos-
phorylation is ensured by its heterologous expression in
E. coli, which lacks the protein kinases that phosphory-
late the enzyme (78). Again, sertraline caused a dose-
dependent inhibition of unphosphorylated Pah1
(IC50 = 65 μM) and Pah1-ΔRP (IC50 = 61 μM) (Fig. 2,
right). The IC50 values of sertraline for the inhibition of
unphosphorylated Pah1 and Pah1-ΔRP were slightly
lower (1.3-fold and 1.4-fold, respectively) than those for
the inhibition of the phosphorylated ones. Overall,
these data indicate that the phosphorylation state of
Pah1 or the presence of the RP domain does not
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bars are hidden behind the circles.

Ser
significantly affect the ability of sertraline to inhibit its
PAP activity.

Kinetics of the sertraline- and propranolol-mediated
inhibitions of Pah1 PAP activity

To determine the inhibitory mechanism of sertraline,
we examined the kinetics of Pah1 PAP activity (Fig. 3)
with the unphosphorylated form of the enzyme, which
mimics the functional (i.e., dephosphorylated) form in
the cell (108, 109). The enzyme activity, which was
inhibited by sertraline in a dose-dependent manner
(Fig. 3A), was measured with respect to the surface
concentration (mol %) of PA with varying concentra-
tions of sertraline (Fig. 3B). As described previously
(1, 12, 80), in the absence of sertraline, Pah1 PAP activity
exhibits positive cooperative kinetics with the Km value
and Hill number being 2.3 mol % and 3.3, respectively.
The enzyme activity was reduced by sertraline in a
dose-dependent manner at each PA surface concen-
tration. Sertraline caused a decrease in the Vmax values
for the PAP reaction but did not significantly affect the
Km values and Hill numbers (supplemental Table S2).
Typically, double-reciprocal plots are constructed from
the primary data to observe the type of inhibition
exerted by an inhibitor (110). The cooperative behavior
of PAP activity with respect to PA prevented the con-
struction of these plots directly. Accordingly, the data
from Fig. 3B were transformed to double reciprocal
plots where the PA surface concentration was raised to
an average Hill number of 3.5 (Fig. 3C) (110). Raising the
PA concentration to its Hill number resulted in a family
of straight lines that nearly intersected on the x-axis, a
pattern typical of a non-competitive enzyme inhibition
(110). A replot of the 1/V intercepts from Fig. 3C versus
the sertraline concentration resulted in a straight line
where the x-axis intercept is equal to the Ki for sertra-
line of 13.5 μM (Fig. 3D) (110).

Propranolol, a commonly used PAP inhibitor (4,
50–60), was examined for a basis of comparison to the
inhibitory effects of sertraline. Propranolol inhibited
PAP in a dose-dependent manner (Fig. 4A) with
varying surface concentrations of PA (Fig. 4B). Like
sertraline, propranolol caused a decrease in Vmax

values and did not majorly affect the cooperative
behavior of PAP activity with respect to the surface
concentration of PA (Fig. 4B and supplemental
Table S2). However, relatively small changes in Km

values were observed (Fig. 4C and supplemental
Table S2). The Ki value of 94.5 μM was determined
from the replot of 1/V intercepts from Fig. 4C versus
the propranolol concentration (Fig. 4D).

The Pah1 catalytic core is the target for the
sertraline- and propranolol-mediated inhibitions of
PAP activity

We questioned whether the inhibitory effects of
PAP activity by sertraline and propranolol are addi-
tive or synergistic. To address this question, PAP
traline inhibits phosphatidic acid phosphatase activity 5
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Fig. 3. Effect of sertraline on the kinetics of Pah1 PAP activity. A: Pah1 expressed in E. coli was purified and assayed for PAP activity
with the indicated concentrations of sertraline. The PA surface concentration was maintained at 2.4 mol %. The inset is a replot of
the sertraline-mediated inhibition of PAP activity. B: Pah1 PAP activity was measured as a function of the PA surface concentration
(mol %) with the indicated concentrations of sertraline. C: double reciprocal plot of the data in panel B where the PA surface
concentration was raised to the average Hill number of 3.5. D: replot of the 1/V intercept values obtained from panel C versus the
sertraline concentration. The values shown in A and B are an average of three separate experiments ± SD (error bars). Some error
bars are hidden behind the circles.
activity was measured at a subsaturating surface
concentration of PA in the presence of sertraline,
propranolol, or both (Fig. 5). When sertraline and
propranolol were fixed at the concentration of 62 μM,
they exhibited a partial inhibitory effect by reducing
Pah1 PAP activity by 38% (Fig. 5, right) and 17% (Fig. 5,
left), respectively. As discussed above, sertraline eli-
cited a stronger inhibitory effect when compared
with propranolol. The addition of sertraline to pro-
pranolol and vice versa resulted in further inhibition
of PAP activity in a dose-dependent manner (Fig. 5).
At the 1:1 M ratio of sertraline and propranolol (ie,
each at the concentration of 62 μM) the two drugs
together inhibited Pah1 PAP activity by ∼ 50%. This
result shows that sertraline exhibits an additive effect
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on the inhibition of Pah1 PAP when combined with
propranolol, and vice versa.

We sought evidence for the interaction of sertraline
or propranolol with Pah1 by hydrogen-deuterium ex-
change mass spectrometry. Good overall peptide
coverage was obtained with approximately 90%
sequence coverage, with most of the missing sequences
predicted to be disordered (supplemental Table S1).
Unfortunately, with a time-course of 20 s to 1 h, we
failed to see protected peptides by this method, sug-
gesting that the inhibitor-binding site does not protect
backbone amide exchange or it binds in a region with
low baseline exchange.

Instead, we utilized the AutoDock4 (94) program with
the Lamarckian genetic algorithm to predict the
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interaction of sertraline and propranolol with the
AlphaFold (92, 93) structure of Pah1 (Fig. 6A). When
sertraline and propranolol were docked to Pah1, the
most frequent docked states of the inhibitors were
similar, displaying interactions with the HAD-like
domain that contains Asp-398, Asp-400, and Thr-402
of the DXDX(T/V) catalytic motif (Fig. 6B). Sertraline
is predicted to be in close proximity to Pro-393, Tyr-437,
and Phe-525 (Fig. 6B, upper) whereas propranolol is
predicted to interact with Pro-393, Phe-525, Pro-544,
and Arg-547 (Fig. 6B, lower), which are allosteric to
the catalytic site residues. The inhibitors sertraline and
propranolol interacted with the HAD-like domain in
these conformations at the frequency of 42% and 15%,
respectively, of the docked states (supplemental Fig. S1).
Se
The predicted Ki values for sertraline and propranolol
derived from the molecular docking simulations were
5.9 and 87.1 μM, respectively, which are similar to the Ki

values (13.5 and 94.5 μM, respectively) determined by
the detailed kinetic analyses (Figs. 3 and 4).

Given the prediction that sertraline and propranolol
interact with an allosteric site in the HAD-like domain,
we tested if the inhibitors would affect the PAP activity
of purified Pah1-CC (catalytic core). Pah1-CC is
composed of the catalytic core (N-LIP and HAD-like
domains, amphipathic helix, and the WRDPLVDID
domain) and lacks all non-catalytic regulatory se-
quences (i.e., intrinsically disordered regions, RP
domain, and acidic tail) of Pah1 (83) (Fig. 6C). Pah1-CC is
enzymatically competent in vitro and in vivo, but is not
rtraline inhibits phosphatidic acid phosphatase activity 7
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regulated for its subcellular localization by phosphor-
ylation and dephosphorylation (83). Both sertraline
(IC50 = 57 μM) and propranolol (IC50 = 272 μM)
inhibited the PAP activity of Pah1-CC (Fig. 6D) indi-
cating that the catalytic core is involved with the inhi-
bition of PAP activity.

Sertraline and propranolol inhibit the PAP activity
of human lipin 1 isoforms

The homologous Pah1 enzyme in humans is known
as lipin 1, which exists in three isoforms, namely lipin 1α,
β, and γ (2–4, 111). Each of the isoforms was heterolo-
gously expressed in E. coli, which allowed for their
isolation in the unphosphorylated state (4). The effect
of sertraline on lipin 1 PAP activity was examined in the
same assay condition used for S. cerevisiae Pah1 using the
PA surface concentration of 2.4 mol % in the Triton X-
100/PA-mixed micelle. Sertraline inhibited the three
isoforms of lipin 1 in a dose-dependent manner (Fig. 7),
and its IC50 values for the α, β, and γ isoforms were 103,
108, and 143 μM, respectively. Like sertraline, propran-
olol inhibited all three isoforms of lipin 1 in a dose-
dependent manner, and its IC50 values for the α, β,
and γ isoforms were 226, 271, and 227 μM, respectively.
The IC50 values of sertraline for lipin 1 isoforms were
∼2-fold lower than those of propranolol, indicating that
sertraline is a better PAP inhibitor.

Sertraline-mediated growth inhibition is dependent
on culture medium

The effect of sertraline on the exponential growth of
S. cerevisiae cells was examined in two types of
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chemically defined synthetic medium, RPMI-0.2%
glucose and SC-0.2% glucose. RPMI medium, which is
limited in nutrients needed for the growth of
S. cerevisiae, is commonly used for drug susceptibility
testing of pathogenic yeast (112–114), whereas SC me-
dium is optimized for the growth of S. cerevisiae (76, 84).
The glucose concentration of the growth media was
lowered to 0.2% to readily observe the inhibitory effect
of sertraline. The drug added to the growth medium
caused the inhibition of exponential growth, and its
inhibitory effect was much stronger in the RPMI me-
dium (Fig. 8A vs. C). For example, 10 μM sertraline was
enough in the RPMI-0.2% glucose medium to greatly
reduce cell growth, whereas 245 μM of the drug was
required in SC-0.2% glucose medium to elicit a similar
reduction of cell growth. In another experiment,
exponential phase cells were statically incubated for
2 days with different concentrations of sertraline. In
this case, the drug inhibited cell growth in a dose-
dependent manner (Fig. 8B, D). The concentration of
sertraline that abolishes cell growth was ∼30-fold less in
RPMI-0.2% glucose medium when compared with that
in SC-0.2% glucose medium.

High-copy expression of PAH1 rescues the
sertraline-mediated reductions in growth and lipid
droplet formation in pah1Δ mutant cells

The pah1Δ mutant, which lacks the PAP activity of
Pah1 (1), exhibits a myriad of deleterious phenotypes
that are caused by a defect in balancing cellular levels
of PA and DAG (1, 15, 41). Accordingly, we questioned
what effect sertraline has on the growth of pah1Δ cells.
For this experiment, we cultured the mutant in SC-0.2%
glucose medium because of its growth defect in RPMI-
0.2% glucose. The pah1Δ mutant was more sensitive to
sertraline than the WT control, and its growth was
completely inhibited at the drug concentration of
200 μM (Fig. 8D).

We questioned whether the sertraline-mediated
growth inhibition of the pah1Δ mutant is rescued by
high-copy expression of PAH1. We reasoned that an
overexpressed level of PAP activity would more
readily rescue the inhibitory effect of the drug on the
mutant growth. In this experiment, the glucose con-
centration was raised to 2% in the SC medium to allow
better growth of the pah1Δ mutant in the presence of
sertraline. The pah1Δ mutant incubated in SC-2%
glucose with 200 μM sertraline did grow but exhibi-
ted a severe reduction in growth (Fig. 9A). The growth
defect of pah1Δ cells caused by the drug was rescued
by the overexpression of PAH1. In the absence of
sertraline, pah1Δ cells expressing PAH1 also showed
better growth when compared with those lacking the
gene. However, the positive effect of PAH1 on the
growth of pah1Δ cells was much greater in the pres-
ence of sertraline (Fig. 9A).

As described previously (30, 73), lipid droplet for-
mation was disrupted in pah1Δ cells when they were
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cultured in the absence of sertraline; the low lipid
droplet numbers were also observed in the mutant
cells treated with the drug (Fig. 9B, C). Consistent with
the effect that PAH1 gene overexpression had on the
growth of sertraline-treated pah1Δ mutant cells, the
PAP-encoding gene overexpression rescued the
defect of the mutant cells in lipid droplet formation
(Fig. 9B, C).
Se
Sertraline rescues the lethal effect of Pah1-CC
overexpression on cell growth

The excess PAP activity imparted by overexpression
of the unregulated Pah1-CC variant disturbs lipid
metabolism to the point of causing cell death (83).
Given that sertraline inhibits the PAP activity of Pah1-
CC in vitro (Fig. 6D), we reasoned that the drug might
ameliorate the lethal effect of the variant in vivo. To
rtraline inhibits phosphatidic acid phosphatase activity 9
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examine this hypothesis, Pah1-CC, as well as Pah1, were
overexpressed in cells incubated in the absence and
presence of 100 μM sertraline; growth was measured
after 4 days of incubation (Fig. 10). As expected, the
overexpression of Pah1-CC prevented the growth of
cells incubated without sertraline, and sertraline caused
a mild inhibition of the growth of the cells expressing
Pah1. The addition of sertraline to the growth medium
of the cells overexpressing Pah1-CC partially rescued
the inhibitory effect of the variant (Fig. 10). These re-
sults indicated that the catalytic core of Pah1 is a target
for sertraline in vivo.

Sertraline reduces TAG content in S. cerevisiae and
human HepG2 cells

In the de novo pathway of lipid synthesis in
S. cerevisiae, the DAG produced by Pah1 PAP activity is
channeled into TAG (1, 15, 115). The DAG produced by
the enzyme reaction is also utilized by mutants defective
in the synthesis of the membrane phospholipids phos-
phatidylcholine and/or phosphatidylethanolamine if
they are supplemented with choline and/or ethanol-
amine via the CDP-choline and/or CDP-ethanolamine
branches of the Kennedy pathway (15, 116, 117). The
PAP substrate PA is normally utilized for the synthesis
of phosphatidylcholine and phosphatidylethanolamine,
along with all other membranes phospholipids (e.g.,
phosphatidylinositol, phosphatidylserine, phosphatidyl-
glycerol, cardiolipin), via the CDP-DAG pathway (15, 116,
117). Accordingly, we questioned whether the sertraline-
mediated inhibition of PAP activity in vitro correlates
10 J. Lipid Res. (2025) 66(1) 100711
with a change in the lipid contents in vivo. For this
experiment, WT cells were grown in the absence or
presence of a sublethal dose of sertraline in SC-0.2%
glucose medium containing [2–14C]acetate. The radio-
labeling was performed in the SC medium owing to the
difficulty of [2–14C]acetate incorporation into cells
grown in the RPMI medium. Following a 12 h radio-
labeling, lipids were extracted, subjected to TLC anal-
ysis, and the levels of TAG and phospholipids were
determined by phosphorimaging and ImageQuant an-
alyses (Fig. 11A). In the control cells grown without
sertraline, the relative amounts of TAG and phospho-
lipids were ∼20 and ∼40%, respectively. In contrast, the
TAG and phospholipid contents in the sertraline-
treated cells were decreased and increased, respec-
tively, by 2.2- and 1.2-fold (Fig. 11A). Thus, the inhibition
of the PAP reaction resulted in the utilization of PA for
the synthesis of phospholipids at the expense of TAG.

As in S. cerevisiae, the DAG produced by the PAP re-
action in mammalian cells is utilized for the synthesis of
TAG (44, 118). In contrast to S. cerevisiae, phosphatidyl-
choline and phosphatidylethanolamine are predomi-
nately synthesized via the Kennedy pathway from the
DAG produced in the PAP reaction (44, 118). As in
S. cerevisiae, PA is utilized, via CDP-DAG, for the syn-
thesis of other membrane phospholipids that include
phosphatidylinositol, phosphatidylglycerol, and car-
diolipin (44, 118). The sertraline-mediated inhibition of
human lipin 1 PAP activity prompted the analysis of
lipid content in human HepG2 cells in response to the
drug. In this experiment, the cells adhered to culture
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dishes for 6 h and were incubated with 10 μM sertraline
for 18 h in supplemented Dulbecco’s Modified Eagle
Medium. Following the sertraline treatment, lipids were
extracted, separated by TLC, and visualized by char-
ring. The quantification of lipid contents showed that
the major effect of sertraline on HepG2 cells was
shown by a 2-fold reduction in the TAG level (Fig. 11B).
In contrast to the sertraline-mediated increase in
phospholipids observed in S. cerevisiae (Fig. 11A), the
relative amount of phospholipids in the HepG2 cells
was not significantly affected by the drug treatment
(Fig. 11B). This result is not easily explained given that
phospholipids in mammalian cells are synthesized from
both PA and DAG. How the sertraline-mediated inhi-
bition of PAP activity affected their synthesis is unclear.
Ser
DISCUSSION

In the yeast S. cerevisiae, as well as in higher eukaryotic
organisms, PAP plays a key role in regulating the PA/
DAG balance and control of lipid synthesis (15, 17, 41,
44, 108, 119, 120). Drugs that inhibit PAP activity are
useful in that they may regulate cellular functions
associated with the substrate PA and product DAG (e.g.,
the synthesis of membrane phospholipids and the
neutral lipid TAG) that ultimately control cell meta-
bolism and growth (15, 17, 41, 44, 108, 119, 120). Of the
drugs that have been shown to inhibit PAP activity (e.g.,
propranolol, phenylglyoxal, chlorpromazine, and bro-
mophenol lactone) (50–52, 121–124), propranolol has
received the most attention. For example, propranolol
has been useful in showing how PAP influences
cellular physiology and disease states in mammalian
cells (28, 59–63) and how the enzyme affects virulence
and inhibits the growth of pathogenic yeast (55). Here
we showed that the antidepressant drug sertraline (64)
is a novel PAP inhibitor that rivals the potency of
propranolol.

Using purified Pah1 from S. cerevisiae as a model, we
showed that sertraline inhibits PAP activity by a
noncompetitive mechanism affecting the Vmax of the
reaction with a Ki value (13.5 μM) in the low micromolar
range. The sertraline-mediated inhibition of Pah1 PAP
activity was not significantly affected by its phosphor-
ylation, which regulates the enzyme activity (109), or by
the fungal-specific RP domain required for efficient
phosphorylation (80). These data also imply that ser-
traline does not inhibit Pah1 PAP activity by interacting
with the RP domain or the intrinsically disordered re-
gions of Pah1 leaving the structured catalytic core as the
most likely target. Based on Ki values, sertraline was a
7-fold more effective inhibitor when compared to
propranolol. Although a kinetic comparison was not
performed here, we showed that sertraline inhibited
the PAP activities of purified human lipin 1 isoforms
and that it was a 2-fold better inhibitor based on the
IC50 values when compared with propranolol. The IC50

values of sertraline for the inhibition of lipin 1α, β, and
γ were similar, suggesting that the drug does not
interact with the isoform-specific sequences.

In the inhibition of S. cerevisiae Pah1 PAP, the effects
of sertraline and propranolol were additive at sub-
saturating concentrations of the inhibitors. Where
these data cannot distinguish whether the drugs are
additive because of the use of subsaturating concen-
trations or that the drugs target different sites on Pah1,
they are consistent with sertraline being a better in-
hibitor than propranolol. If sertraline has a higher af-
finity for a preferred or shared site though, sertraline
should outcompete propranolol when sertraline is
added in greater amounts to the reactions which is
consistent with the greater extent of inhibition seen
with increasing sertraline concentrations. Molecular
traline inhibits phosphatidic acid phosphatase activity 1
1
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docking of the drugs indicated that they preferentially
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Fig. 10. Sertraline rescues the lethal effect of Pah1-CC over-
expression on cell growth. pah1Δ cells (SS1026) overexpressing
Pah1 (pGH452) or Pah1-CC mutant variant (pGH465) were
grown in SC-2% raffinose until saturation before harvesting
and re-inoculating at A600 nm of 0.1 in SC-2% galactose with
100 μM sertraline. The A600 nm readings were taken after 4 days.
The data are means ± SD (error bars) from three separate ex-
periments. The individual data points are also shown. Some
error bars are hidden behind the circles. *P < 0.05 versus Pah1
of control. #P < 0.05 versus Pah1-CC of control.
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interaction are allosteric to those of the DXDX(T/V)
catalytic residues. Moreover, the lack of major effects
of sertraline and propranolol on the Km value for PA is
consistent with the drugs interacting with an allosteric
site. That sertraline and propranolol target the HAD-
like domain of Pah1 is supported by the experimental
evidence that both drugs inhibited the PAP activity of
the purified Pah1-CC variant that is comprised only of
the catalytic core of Pah1. In a previous docking simu-
lation study (55), propranolol was shown to interact with
HAD-like domain residues of the M. oryzae Pah1,
although not the homologous residues identified here.
Whether sertraline inhibits the PAP activity and docks
to the HAD-like domain of the M. oryzae Pah1 homolog
is unknown. Taken together, these data imply sertraline
and propranolol share a common preferred site of
interaction with Pah1, but do not preclude multiple sites
of interaction.

Prior work has shown that sertraline inhibits the
growth of S. cerevisiae (71) as well as that of pathogenic
yeasts and filamentous fungi (65–70). Here, we showed
that the inhibitory effect of sertraline on growth was
dependent on the medium in which the cells were
grown. RPMI, a growth medium routinely used for
growing mammalian cells in culture and commonly
used to assess the effectiveness of antimycotic agents in
an environment found in the human body during
infection (112–114), afforded greater sertraline-
mediated sensitivity when compared with SC medium
formulated for S. cerevisiae growth (76, 84). We found
that the RPMI medium compromised [2–14C]acetate
uptake and labeling of lipids in WT cells, as well as the
growth of pah1Δ mutant cells. Accordingly, SC-0.2%
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becco’s Modified Eagle Medium were allowed to adhere to in-
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bars) from three separate experiments. The individual data
points are also shown. Some error bars are hidden behind the
circles. *P < 0.05 versus TAG of control. #P < 0.05 versus
phospholipid of control. PL, phospholipid.

Ser
glucose medium was used for these studies. In the SC-
0.2% glucose medium, the pah1Δ mutant was much
more sensitive to sertraline when compared with that
of WT cells. It is well known that the pah1Δ mutant is
already sensitive to several growth stressors (e.g., tem-
perature, killer toxin, hydrogen peroxide, fatty acids) (1,
12, 15, 73, 125). Consequently, S. cerevisiae, and perhaps
opportunistic fungal pathogens, would be more readily
susceptible to other antimycotic agents if PAP activity is
inhibited by sertraline. That Pah1 is a physiological
target of sertraline is supported by the observations
that the overexpression of PAH1 in pah1Δ mutant cells
rescued the sertraline-mediated growth inhibition of
the mutant, the lethal effect of Pah1-CC overexpression
in S. cerevisiae is rescued by sertraline supplementation,
and that a sublethal dose of the drug resulted in 2-fold
decrease in the TAG content. The decrease in TAG
content of sertraline-supplemented HepG2 cells sup-
ports the notion that lipin 1 PAP might be a target for
the drug in humans.

Whether sertraline might be used to effect remedi-
ation of lipid-based disease based on PAP inhibition in
humans is unknown. In theory, the sertraline-mediated
inhibition of TAG synthesis could minimize latent
Mycobacterium tuberculosis infection that relies on host
TAG for survival (126). Other potential applications
include the alleviation of intestinal inflammation-
driven colon cancer development (127) and suppres-
sion of SARS-CoV-2 replication (128), conditions
affected by loss of lipin 1 PAP activity. Although these
applications are speculative, sertraline may be used as a
lead compound. Structural analogs could be used to
identify the functional groups responsible for the se-
lective serotonin reuptake inhibitor-related properties
of sertraline versus the functional groups relevant to its
ability to inhibit PAP activity. Structural analogs could
also be used to enhance the specificity or potency of the
drug as a PAP inhibitor.

Repurposing existing therapeutics is one option for
developing new antimycotic strategies (65, 129, 130), and
sertraline appears to be a good candidate for this pur-
pose. Utilizing sertraline in combination therapies with
preexisting antimycotics may amplify the effects of
those drugs prolonging their usefulness as antifungal
resistance continues to evolve (131, 132). While the data
support the conclusion that the inhibitory effect of
sertraline on S. cerevisiae growth stems from the inhibi-
tion of Pah1 PAP activity, other mechanisms are
possible. The inhibitory effect of sertraline on the
growth of pah1Δ mutant cells indicates additional tar-
gets of the drug. For example, sertraline has been
shown to intercalate into phospholipid bilayers to alter
membrane organization and modulate phospholipase
activities in S. cerevisiae (71). These are additional mech-
anisms that would facilitate the effectiveness of the
drug to inhibit cell growth.
traline inhibits phosphatidic acid phosphatase activity 13
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